Tiling Proofs of Some Formulas for the Pell Numbers of Odd Index
نویسنده
چکیده
We provide tiling proofs of several algebraic formulas for the Pell numbers of odd index, all of which involve alternating sums of binomial coefficients, as well as consider polynomial generalizations of these formulas. In addition, we provide a combinatorial interpretation for a Diophantine equation satisfied by the Pell numbers of odd index.
منابع مشابه
Tiling Proofs of Recent Sum Identities Involving Pell Numbers
In a recent note, Santana and Diaz–Barrero proved a number of sum identities involving the well–known Pell numbers. Their proofs relied heavily on the Binet formula for the Pell numbers. Our goal in this note is to reconsider these identities from a purely combinatorial viewpoint. We provide bijective proofs for each of the the electronic journal of combinatorics 13 (2006), #R00 1 results by in...
متن کاملOn the sum of Pell and Jacobsthal numbers by matrix method
In this paper, we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph. We investigate relations between permanents and determinants of these upper Hessenberg matrices, and sum formulas of the well-known Pell and Jacobsthal sequences. Finally, we present two Maple 13 procedures in order to calculate permanents of t...
متن کاملCombinatorial Proofs of Some Identities for the Fibonacci and Lucas Numbers
We study the previously introduced bracketed tiling construction and obtain direct proofs of some identities for the Fibonacci and Lucas numbers. By adding a new type of tile we call a superdomino to this construction, we obtain combinatorial proofs of some formulas for the Fibonacci and Lucas polynomials, which we were unable to find in the literature. Special cases of these formulas occur in ...
متن کاملTiling a Strip with Triangles
In this paper, we examine the tilings of a 2 × n “triangular strip” with triangles. These tilings have connections with Fibonacci numbers, Pell numbers, and other known sequences. We will derive several different recurrences, establish some properties of these numbers, and give a refined count for these tilings (i.e., by the number and type of triangles used) and establish several properties of...
متن کاملOn Pell, Pell-Lucas, and balancing numbers
In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009